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Abstract
Track reconstruction is a common research subfield in experimental High Energy
Physics as well as in other research areas. High energy physics experiments consist
of several types of sub-detectors which need to be combined to provide an efficient
measurement. Moreover, because of the nature of the investigated interactions, the
tracking parameters must be specified with very high accuracy. For these reasons,
high performance algorithms are being used to provide high reconstruction efficiency,
low number of fake-reconstructed tracks and high resolution. In this thesis, a new
reconstruction method was developed for track reconstruction in Drift tube chambers.
Drift tube chambers dominate in muon detection during the last 30 years. During the
last decade there have been numerous attempts to replace them with newer technolo-
gies (Silicon Drift Detectors, MicroMegas, etc). The arsenal of track reconstruction
techniques is very large. Hough transforms, Combinatorics, Projecting techniques,
Elastic tracking, Kalman filters and many other algorithms have been studied and
applied. This study describes the application of a novel method based on the Legen-
dre transform. The Legendre transform is very commonly used in theoretical physics
(for example in Thermodynamics and Analytical Mechanics). In this application its
geometrical properties are utilized. Drift tube chambers provide a set of drift circles
as signal and the particle tracks are found by finding the common tangent lines to
these circles. The Legendre transform of a convex or concave function provides all
the tangent lines to the function. According this principle, for each drift circle a
new space (the space of tangents) is created. The common points on this new space
represent the tangent lines. The method was tested in standalone controlled Monte
carlo environment for a study of its full properties. Furthermore, the algorithm was
applied to the new and under commissioning Monitored Drift Tube (MDT) chambers
of the ATLAS experiment.
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Chapter 1

The ATLAS Detector

Figure 1.1: The ATLAS experiment

The ATLAS[4] (A Toroidal LHC Apparatus) detector is a general purpose experiment,
designed to study new physics provided by the LHC in the energy frontier. The
experiment is designed in common sense of the High Energy physics experiments of
the last 30 years. A three-dimensional view of the detector is depicted in figure 1.1.
It consists of the following main systems:

• Inner Detector

1



Chapter 1: The ATLAS Detector 2

• Calorimeters

• Muon Spectrometer

• Magnet System

The inner detector[5] is located around the interaction region. It consists of the
Pixel detector, the Silicon Tracker and the Transition radiation tracker and it is
designed for accurate measurement of the position, sign and momentum of charged
particles. For this reason, the inner detector is located inside a solenoid magnet which
provides a homogeneous magnetic field of 2 T. Outside the Inner detector we have
the electromagnetic and hadronic calorimeters[6] that measure the energy deposit by
the particles that escape the inner region.
The outermost and largest part of the detector consists of the Muon spectrometer[7].
The muon spectrometer of ATLAS is a standalone system that can provide accurate
transverse momentum (pt) measurements. It consists of three toroidal magnetic sys-
tems that provide a mean magnetic field of 0.5 T. There are three layers of precision
and trigger chambers measuring the curved tracks of the outgoing muons. The next
sections describe the corresponding subsystems.

1.1 The Atlas Coordinate System

The ATLAS coordinate system is described in Fig. 1.2. The x axis points to
the center of the accelerator tunnel while the y axis is pointing upwards. The z axis
points towards the beam. Using cylindrical coordinates, the azimuthial angle φ is
defined by the positive x axis and the polar angle θ corresponds to the positive y
axis. The commonly used pseudo-rapidity ηis used instead of θ and it is defined by:

η = − ln

[
tan

(
θ

2

)]

1.2 Inner Detector

The ATLAS inner detector is the heart of the apparatus. It consists of three
subsystems contained in a 2 T solenoid magnet. The pixel detector is the first detector
next to the interaction point. It consists of eight million pixels situated in three
layers concentric to the beam line. The granularity is described by one pixel for each
50 µm in the transverse r, φ plane and one pixel per 400 µm for the estimation of
the z coordinate of the interaction point. The pixel detector provides very accurate
measurements of the three coordinates of the particle track (r, φ, z) which provides
a high efficiency in resolving the interaction vertex. The next detecting layer of
the inner detector is the Semiconductor Tracker (SCT). The barrel part consists
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of four layers of silicon strips with a strip pitch of 80 µm. The strips in different
layers differ by a stereo angle which can provide a z measurement. The end-cap
parts are discs consisting of strips pointing the beam axis that provide the transverse
measurement. In the same manner to the barrel part, the disc strips are situated
in a small stereo angle for the possibility of a z measurement. The final part is the
Transition Radiation Tracker (TRT). The TRT is a straw type drift detector similar
to the Muon Drift tube chambers but much smaller. The drift straw maximum length
is 150 cm and the radius is 4 mm. The straws are aligned parrel to the beam axis
to provide measurements of the bending tracks. The TRT can also detect transition
radiation. Transition radiation is emitted when a relativistic particle passes through
the border of two media with different electrical properties. The transition radiation
can provide information about the velocity of the charged particles. This is important
for separating different particles like electrons from pions. Summarizing, the ATLAS
inner detector is designed to provide accurate measurements in the LHC high density
environment. The data rate is estimated to be 40 MHz and the detector must detect
the particles coming from the event in less that the 25 ns of the bunch crossing
to reduce particles coming from previous events. The typical momentum resolution
of the ATLAS inner detector is ∆pt/pt = 0.04% and the resolution of the space
measurements in the transverse plane is 15 µm.

1.3 Calorimetry

The ATLAS calorimeter system consists of the electromagnetic and the hadronic
calorimeter. The electromagnetic calorimeter uses lead as absorber and liquid argon
as the sampling material. The geometrical coverage is defined by |η| < 3.2 and
0 < φ < 2π. For |η| < 2.5 there are three calorimeter sections whereas for higher
rapidities there are only two. The width of the calorimeter is more than 24 iteraction
lengths providing that most of the particles will be measured. The energy resolution
of the liquid argon calorimeter is:

∆E

E
=

11.5%√
E

where E is measured in GeV and the polar angle resolution is

∆θ =
50 mrad√

E

The hadronic part consists of iron tiles in the barrel and liquid argon in the end-
cap. In the barrel region, the tiles are interleaved by scintilators. The end-cap part
consists of liquid argon. The average jet resolution of the calorimeter is

∆E

E
=

50%√
E
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Finally, the last - forward part of the hadronic calorimeter consists of three layers.The
first is made of cooper and the other two are made of tungsten. All layers use liquid
argon as sampling material.

1.4 Muon Spectrometer

The Muon Spectrometer is the largest sub-detector in the ATLAS apparatus.
In most of the pseudorapitidy range, it consists of three detecting layers filled with
trigger and precision chambers. The Muon spectrometer has been designed with the
capability of a standalone operation. There is a standalone trigger and the momentum
can be measured with high accuracy.

For bending the tracks, three large toroid magnets consisting of eight coils are used
(Fig 1.3.c). In the barrel region, the large barrel toroid magnet covers a large area
of 25 m length and five meters radius with inner radius of 4.7 m and outer radius of
10 m. The two end-cap toroids have a length of 5 m and a diameter of 10.7 m. They
also consist of eight coils radially configured. The magnet system provides an average
bending power of 3 Tm in the barrel and 6 Tm in the end-cap. The magnetic field
map has an eightfold shape because of the finite number of toroid coils (Fig 1.3.b)
and the bending power becomes lower in the transition region between the barrel and
the end-cap because of the superposition of the fields.

1.4.1 Muon subdetectors

The barrel part of the Muon Spectrometer consists of three layers of subdetectors.
The inner layer consists of Monitored Drift Tube (MDT) chambers. These chambers
(named BIS, BIL) are positioned outside the calorimeter. They are triggered by the
LHC clock and can provide accurate measurements of the trajectories of the muons.
The MDT chambers consist of aluminum tubes and detect particles by the drift of
the electrons produced by ionization of gas atoms. The MDT chambers are described
in detail in the next chapter. The MDT chambers of the middle layers (BML, BMS,
BMF) are surrounded by two trigger chambers on each side, the Resistive plate cham-
bers (RPC). The trigger chambers provide trigger information and measurement of
the second coordinate of the particle tracks. The middle layer detectors are placed
inside the magnet. Finally the third layer consists of MDT chambers (BOF, BOS,
BOL) paired with an RPC in the outer surface.

The end-cap scheme is different because it is impossible to install chambers in-
side the end-cap toroids. The first layer of end-cap detectors is placed outside the
magnet . These detectors are Cathode strip chambers (CSC) that provide accurate
measurements at higher rates than the MDT and this is the reason they are stationed
in this region. The middle and outer layers consists of MDT chambers. The trigger
chambers used in the End-cap are Thin gap chambers (TGC) and are placed on both
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sides of the middle MDT layer. A three dimensional view of the different detector
layers in barrel and end-cap region is depicted in Fig.1.4.

1.4.2 Muon Reconstruction

For the reconstruction of muons in ATLAS, the Muon spectrometer can be used for
identification and/or measurement while the inner detector is used for measurement
of the charged particles . There are two different types of reconstruction:

• Combined Reconstruction (Muon spectrometer + Inner detector)

• Muon Spectrometer standalone reconstruction

In the second case it is also possible to provide an energy correction to the muon
spectrometer reconstructed tracks. The correction is referring to the reconstruction
of the muon energy reconstructed in the calorimeter. The transverse momentum(pt)
measurement of the particle in the Muon spectrometer is taking place on the rz plane
where the bending power of the magnets is present. In the r, φ plane the tracks are
straight lines. The monitored drift tubes are vertical to the beam axis to measure
the curved tracks. However inside a chamber, the curvature of the track can be
neglected and the tracks can be considered as straight lines. The typical steps of the
reconstruction in the muon spectrometer are outlined below.

• Search of particle patterns in the bending and non bending plane and merging
to roads.

• Local Segment reconstruction for the precision detectors.

• Association of segments to roads and fit of the track.

• Material corrections.

The first step is done with the trigger hits. Particle roads are found in the bending
and non-bending plane and the patterns are combined to form global roads. Segments
reconstructed in the local detector sections are associated to roads to form particle
tracks. Finally tracks are fitted for extracting the momentum. Some material correc-
tions are applied. The second step (Segment reconstruction) is the main topic of this
thesis and is described in the following chapters.

Muon reconstruction algorithms

The arsenal of the reconstruction algorithms in the ATLAS Muon spectrometer
is very large. There are four full reconstruction packages:

• Moore[15] (Muon object oriented reconstruction) written in C++.
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• Muonboy[16] written in g77.

• MuGirl (C++).

• MoMu (Modular muon reconstruction) written in C++ in a completely modular
approach.

1.4.3 Performance of Muon Spectrometer

A typical study of the performance of the Muon Spectrometer is presented in this
section. This study was performed with GEANT Monte Carlo events in the ATLAS
software framework using the Moore package. The latest version of the algorithms
has been used. A sample of 300 K events with top decays in the lepton+jet channel
was used for the study. The muons produced by the W decay of top have an average
transverse momentum of 40 GeV and they are ideal for performance measurements.
The results of the analysis are presented in Fig. 1.5. The first column shows the
reconstruction efficiency of the detector as a function of the transverse momentum (a),
the pseudo-rapidity η (c) and the azimuthial angle φ (e). In all plots the standalone
reconstruction is compared to the combined reconstruction. It can be concluded
that the acceptance in the standalone operation is larger than in the combined one.
This is expected because in the combined case there is a match between the muon
spectrometer and the inner detector tracks. The difference in the efficiency refers
to the cases where this match has not been done. Fig. 1.5.a shows a very smooth
behavior of the detector in the the pt spectrum. In Fig. 1.5.c, there are some regions
where the efficiency is low. In η = 0 there is a gap between the muon chambers
where cabling services of the muon spectrometer are installed. In η = ±1 there is
the transition region between the barrel and the end-cap where the bending power
is much lower and the tracks may pass through less than three layers of chambers.
In Fig. 1.5.e we have a smooth behavior of the efficiency vs φ except two regions in
negative φ which correspond to the supports (feet) of the detector.

The second column contains measurements of the resolution of the Muon spec-
trometer. In Fig.1.5.b the resolution in transverse momentum is plotted. This plot
explains all the effort for the creation of the ATLAS Muon spectrometer. The stan-
dalone measurement of pt for the Muon spectrometer is very near to the combined
(Tracker and Muon) measurement. Tracker provides very higher granularity and in
this pt region, there is a detectable curvature of the track inside the tracker which
results in a very accurate measurement. In very higher pt samples, the Muon spec-
trometer dominates in the Muon measurement. From Figures 1.5.c 1.5.f it can be
extracted that the muon spectrometer efficiency in deriving the impact parameter co-
ordinates is much lower that the inner detector, something that is expected because
of the large area the spectrometer covers and the tracking resolution of the precision
chambers.
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Figure 1.2: The ATLAS coordinate system
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Figure 1.3: ATLAS Toroid magnets. (a) Bending power in the barrel, end-cap and
transition region (b) Magnetic field map lines in the transverse plane (transition
region) (c) Atlas Barrel end end-cap toroid instrumentation
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Figure 1.5: Muon Reconstruction efficiency for combined and standalone reconstruc-
tion. (a) Efficiency vs pt. (b) pt resolution. (c) Efficiency vs η. (d) η resolution. (e)
Efficiency vs φ. (f) φ esolution.



Chapter 2

MDT Chamber Physics and
Technology

Figure 2.1: A Monitored Drift Tube chamber

Drift chambers are well known and commonly used instruments for charged parti-
cle detection(especially muons) in High Energy Physics experiments. A typical drift
chamber is considered as a closed gas-filled space containing signal wires. The ATLAS
MDT chambers (acronym for Monitored Drift Tube) consist of individual drift tubes
and perform the precision coordinate measurement in the bending r, z plane of the
air-core toroidal magnet to provide accurate transverse momentum measurements.
The ATLAS MDT system covers the entire area of 5500 m2 consisting of three layers
of detectors that cover a pseudorapidity range of −2.7 < η < 2.7. The basic detection
element of the Monitored Drift Tube Chamber is a cylindrical aluminium drift tube

11
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of a diameter of 30 mm and a W-Re central wire with a diameter of 50µm. It is
operated with nonflammable gas composed of Ar(90%), CO2(10%), at 3 bar abso-
lute pressure for reduced diffusion and ionization fluctuations. The wire is held at a
potential of +3080 V with reference to the grounded tube. The amplification factor
is set to be very low, 2 · 104, to minimize the effect of ageing. The operating point is
summarized in Table 2. The drift tubes consist of the tube, the wire and the endplug.

Table 2.1: Summary of the nominal MDT operating point.

Parameter Design value
Gas mixture Ar(90%), CO2(10%)
Gas pressure 3 bar absolute

Gas gain 2 · 104

Wire potential 3080V
Maximal drift time 1200ns
Effective threshold 22nd electron

Resolution 80µm

The specifications (taken as engineering tolerances) are 30.000+0.000
−0.030 mm for the tube

outer diameter and 400±20 mm for the wall thickness. Some parameters about tube
specifications are summarized in Table 2.

A W-Re (97/34) gold-plated (3% by weight) wire is used for the anodes of the
drift tubes with diameter 50.0 ± 0.5 µm . The 3% rhenium admixture increases the
rupture limit to 620 g, which is higher than the diesigned wire tension of 350 g. The
rhenium also facilitates the handling of the wire. These parameters are summarized
in table 2.

Table 2.2: Specification of tube and wire material and dimensions.

Tube Wire

Parameter Design value Parameter Design value
Material Aluminium Material W/Re - 97 : 3

Density 2.73g/cm3 Density 19.3g/cm3

Outer diameter 30.000+0.000
−0.030mm Diameter 50.0± 0.5mm

Wall thickness 400± 20mm Surface coating gold-plated 3% by weight
Length ±0.5mm Rupture limit 620g

Finally the endplugs are considered as the key components regarding the electro-
mechanical drift tube characteristics. They are responsible for position the wires pre-
cisely with respect to the tube walls, make the electrical contact between front-end
electronics and between wire and front-end electronics and tube wall, hold the me-
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chanical wire tension and make the gas seal and the connections to the on-chamber gas
manifold.

Figure 2.2: Monitored Drift tube and
endplug

A Monitored Drift Tube Chamber is an as-
sembly of parallel layers (3, 6, 8) of drift
tubes on a frame. Each chamber can have
one or two multi-layers with three or four
layers of tubes on each side. The tubes with
their diameter of 30 mm are closely spaced
so that a layer of three tubes has a thick-
ness of about 82 mm. The Monitored Drift
Tube Chambers closest to the interaction
point have been equipped with four layers
of tubes per multi-layer to optimize the pat-
tern recognition performance at high back-
ground rates. By measuring the drift time
of the ionization electrons in the gas, one
determines (maximum) six coordinates of
a typical track in the plane of the layer and

in the direction across the tubes. This results in a measurement of effectively one
coordinate with 80 µ m precision. Local segments play an important role for track
reconstruction and in the calibration of a MDT chamber. To ensure accurate lo-
cal reconstruction of segments within one MDT chamber, several devices are locally
installed in order to monitor the operation conditions of the chamber:

• Temperature and magnetic field sensors installed on the chambers ensure accu-
rate knowledge of the local environment. The precision on the magnetic field is
∆B/B = 4 · 104 and on the temperature ∆T = 0.5K;

• All MDT chambers are equipped with an in-plane RASNIK alignment system
which measures the dominant modes of the chamber deformation with a preci-
sion of 20 µm ;

• The chambers were constructed with a mechanical precision better than 20 µm .

2.1 Physics of drift tube chambers

The detection of particles and photons is based on their interaction with the
medium of the detector. A charged particle passing through a material interacts via
electromagnetic forces with electrons ,nuclei and the medium as a whole. As the result
of these interactions, the charge particle loses energy, changes its direction and finally
stops after traveling a finite distance called range. Most of the energy losses refer to
molecule and atom excitation and ionization. The possible energy loss mechanisms
are:
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• Coulomb interactions with electrons and nuclei

– atom excitation

– atom ionisation

• Electromagnetic radiation emission called bremsstrahlung (emitted in deceler-
ation of particle in Coulomb field)

• Nuclear interactions

• Cherenkov radiation emission (above certain threshold and if medium is trans-
parent)

• Electromagnetic radiation emission called transition radiation (emitted in travers-
ing a medium with discontinuous dielectric constant).

Coulomb interactions dominate for the gas medium of the Monitored Drift Tube
Chambers. Since the radius of the nucleus is approximately R1 = 10−14 m and the
radius of the atom is R2 = 10−10 m one expects that:

number of interactions with electron

number of interaction with nuclei
=

R2
2

R1
2 = 108

This simple model shows that collisions with atomic electrons are much more probable
than collisions with nuclei.
Atom Excitation takes place when atomic electrons acquire enough energy to move
to higher energy levels than the ground state E1 −−→ E2 to create an excited atom.
When electrons fall back to their original orbit, they emit characteristic X-ray photons
with energy ∆E = E2 − E1.
Atom ionization takes place when atomic electron obtains enough energy to leave the
atom and become a free electron with kinetic energy: E = Eacq − Iion where Eacq is
the energy acquired from the particle and Iion is the ionization potential. Liberated
electrons act as independent particles. If their energy is high enough, they can cause
further ionizations. Those are called δ electrons. For noble gases the cross-section
is about 107 barn , so the possibility to produce ions and electrons in a noble gas
is limited. However, it is possible for the excited atom to take part to additional
reactions that finally can lead to ionization.

Another mechanism of ionization caused by the Penning effect. In some molecules
or atoms, metastable electrons that do not fall back directly to the ground state, are
able to de-exitate by a collision with another atom which leads to ionization of the
second atom:

Ne* + Ar→ Ne + Ar+ + e−

For noble gases, one pair of ion-electron is produced on average for every 30 eV of
energy that the passing charged particle loses. For example, if the incoming particle
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has 3 keV energy and losses all of his energy in the gas volume, 100 pairs of ions-
electrons will be produced.

In the presence of an external electric field the electrons are recombined with the
ions (because of their electric attraction) emitting a photon:

X+ + e− → X + hν

It is also possible for two ions to recombine:

X− + Y+ → XY + hν

In general, the recombination rate n depends on the concentration of the positive
and negative charge cariiers n+, n− respectively. The electron capture procedure is
based on the captivity of free electrons from electronegative atoms forming negative
charged ions:

e− + X→ X− + hν

. This kind of atoms have their external shell almost full, so adding one more electron
leads to liberation of energy. The negative ion that is formed is unstable. That
leads us to the conclusion that the choice of electronegative gas in the detector will
dramatically reduce the performance of it, because the electrons will be captured in
the detector before they give a signal response.

Charges produced by ionizing events quickly lose their energy in multiple collisions
with the gas molecules and finally recombine. The average value of the thermal energy
of the molecules is derived by simple kinetic theory as: εT = 3/2kT = 0.04eV (stp).
The velocity distribution for the charged particles with the average thermal energy is
provided by the Maxwell distribution. The average velocity is

U =

√
8kT

πm
.

It is denoted that for the same temperature, the average velocity for ions is smaller
than the average velocity of electrons because of their great difference in masses. In
room temperature (20oC) the thermal velocity of electrons is about 104m/s while ions
have almost 102m/s. The relation between the number of charged particles, N , and
the position, x, after an interval time t is

dN

dx
=

N0√
4πDt

exp
−x2

4Dt

where N0 is the total number of charged particles, x the spatial coordinate in the
system with the creation point of the particles as the origin and D the diffusion
coefficient. The rms is given from σ(x) =

√
2Dx and if instead of x the spherical

coordinate r (r = |~r| =
√
x2 + y2 + z2) is used, the volume diffusion can be defined

(σ(r) =
√

6Dr ). The volume diffusion of ions in the air under stp is approximately
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10−3 m after an interval time of 1/s. The diffusion coefficient is provided from kinetic
theory as D = uλ/3 where λ is the mean free path between collisions. For classical
ideal gas:

λ =
1√
2

kT

σ0p

where σ0 is the total cross-section. One can deduce the following expression for the
D:

D =
2

3
√

2π

1

σ0p

√
(kT )3

m
.
When an external electric field is applied across the gas volume, the electrons are
moving towards the cathode and the ions towards the anode. Because of the colli-
sions with the molecules of the gas, the electrons achieve almost spontaneously an
average drift velocity. The last one is added to the thermal velocity. The mobility
is given by µ = u

E
where u is the drift velocity and E the electric field. For moving

charged particles across an ideal gas in the average thermal energy distribution of the
gas,Einstein’s formula can be used:

D

µ
=
kT

e
.

It is possible to achieve a drift velocity of the order of 106 m/s before the saturation
point. In this range of velocities, the external electric field is almost 1 kV/cm. The
diffusion coefficient D increases and leads to greater diffusion of electrons. With the
presence of a magnetic field H via the Lorentz force, the drift velocity changes. The
magnitude of the new drift velocity is

ud,H =
ud√

1 + ω2t2

where ω = eH/m and the angle that the new vector of velocity creates with the
electric field lines is aH = arctan(ωt). The electrons from primary ionizations caused
by the incoming particle, are able to further ionise the gas (if they gain enouph
energy). The second generation of electrons are also able through the same process
to repeat the ionization process. Finally, multiple produced pairs are created. This
phenomenon takes place in the area very close the cathode (typical distances of nm).
In this region, the electric field reaches great values because of the inverse relationship
with the distance(E ≈ 1/r). The electrons have greater mobility than ions therefore
the avalanche shape is like a drop of water. The fast electrons are responsible for the
front part of the drop and the heaver and slower ions form the tail of the drop.
The possibility of ionization per unit length is given by α = 1/λ , where λ is the mean
free path between collisions that leads to ionization. This is also called Townsend
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coefficient. If n is the number of electrons at a given position, after a path dx, the
increase in their number will be dn = nαdx and by integration

n = n0e
αx.

The multiplication factor M can be defined by M = n
n0

= eαx. In a case of a non-
uniform electric field where α = α(x), the previous relation has to be modified in the
following way:

M = exp

a2∫
a1

α(x)dx.

The multiplication factor cannot be increased at will. Secondary processes, like pho-
ton emission can induce the generation of avalanches and space-charge deformation
of the electric field which is strongly increased near the front of the avalanche . These
eventually which result in a spark breakdown. Finally, for a cylindrical detector the
Diethorn equation can be used:

ln(M) =
ln(2)

∆V

V

ln b
α

(
ln

(
V

pα ln b
α

)
− lnK

)

where M is the gas multiplication factor;
V is the applied voltage
∆V is the potential difference through which an electron moves between
successive ionizing events
α is the anode radius
b is the cathode radius
p is the gas pressure
K represents the minimum value of E/p below which the multiplication cannot
occur.

The primary amount of electrons is not capable of efficient detection. The solution for
that is to amplify our signal via the avalanche in a proper gas mixture that contains
a noble gas. Typical noble gases, which have low ionizing potential, are Ar, Kr and
Xe. A detector with only Ar as a gas is not possible to provide a gain greater than
103, 104. This was denoted as a result of the behavior of the excited noble gas. The
noble gases that are usually used de-exitate, emitting a photon with more energy than
the ionization potential of the metal that is usually used inside the detector. For the
Ar, the energy of the photon is 11.6 eV. If the selected metal has a work function of
the order of this energy (and lower), photoelectric effect can occur.
The electrons extracted from photoelectric processes act as the electrons from primary
ionizations, and finally create avalanches and provide fake pulses. In order to avoid
this phenomenon a quantity of a polyatomic gas can also be induced into the detec-
tor. The molecules of polyatomic gases (i.e. CO2) have a lot of degrees of freedom,
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(rotations, oscillations) which results to a broad spectrum of energy levels. In other
words, the molecule can be exitated in many different ways so it can absorb a great
quantity of energetic photons without de-exitations and production of photons (i.e.
methane CH4 can absorb photons with energy starting from 7.9 eV to 14.5 eV). This
process is called quenching and with that we are able to use noble gases to detectors
with gain up to 106. However the usage of polyatomic gas to the detector leads to
some unpleasant chemicals processes which causes a decrease to the gas density. In
order to overcome this purification and recycling of the gas is needed.

2.1.1 MDT Operation in ATLAS

Figure 2.3: Drift tube opera-
tion in a magnetic field with
curved drift path.

A charged particle crossing the tubes interacts via
the electro-magnetic force with the gas. As we have
already described, along the trajectory of the particle
the gas will be ionized and excited. The free electrons
produced by ionization start to drift towards to the
wire and generate a signal. In the vicinity of the wire,
the electrons obtain sufficient kinetic energy due to
the high electric field close to the wire and trigger
the main avalanche process. The drifting electrons gain energy, high enough to ionize
further gas atoms and create more electron-ion pairs. The electrons released here
also gain enough energy for further ionization. The whole procedure results in a
signal amplification, the gas gain. The amount of charge produced in the avalanche
is typically six orders higher than the amount originally produced by the incoming
particle (primary ionization). The signal on the wire propagates to the end of the
tube, where a current-sensitive amplifier and shaper (15ns peaking time) followed
by a discriminator feeds a timing pulse into the on-chamber time-to-digital converter
(TDC). The amplification factor M depends on the gas, gas density and electrical field.
The charge induced to the wire is enough to be detected by on-chamber electronics. In
order to get information about the position of the particle, it is necessary to measure
the time the electrons needed to drift from the origin point on the particle track to
the wire. This time is correlated with the minimum distance of the particle track
to the wire. This is the so-called r − t relation. The r-t relation is used in order
to translate the drift time information into the radial distance, where the particle
was crossing the tube. While the arrival time of the electrons at the wire can be
determined by the electronics connected to the wire, the time of the particle traversal
has to be determined by an additional trigger detector close to the drift tubes. For
the determination of the particle track, a combination of several drift tubes is needed.
The combination of all distances between the particle track and the wires enables the
reconstruction of the track in the coordinate perpendicular to the wire.
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2.2 Construction imperfections and ageing

In this section, some very important issues affecting the imperfections adn ageing
of the monitored drift tube chambers are selected.

2.2.1 Displacement of the wire

Displacement of the central wire can occur due to the gravitational force or partial
mechanical failure of the wire supporting part of the endplug. Due to the gravitational
force, the wires in the tubes are not straight but follow a parabolic curve given by
the equation:

s(x) =

(
1− 4

x2

L2

)
·
(
πρR2

8T

)
cos(φ).

where x is the distance from the tube center, s(x) is the wire displacement, L is
the tube length, ρ is the wire density (g · cm−3), R is the wire radius, T is the wire
tension (g) and φ is the azimuthal angle of the chamber (all lengths ). This has some
consequences on reconstruction and on operation conditions. During reconstruction
if the wire is displaced and if the wire position is not corrected for the sagging of the
wire, the calculation of the radial residual ∆r = |rtrack − rdrift| would yield a wrong
answer. As the functional shape of the wire and the wire tension and wire length
are known with great precision, the actual wire position can be calculated during
reconstruction. The fact that the wire is not perfectly centered in the tube deform
the electric field in the tube and also change effectively the distance that electrons
have to travel in order to reach the wire. As a result, the rt-relation is split into two
parts: one for each side of the displaced wire. The barrel chambers are mechanically
deformed such that the tubes follow the sag of the wire to ensure the non-concentricity
of the wire is less than 100µ m. If not taken into account during reconstruction, the
non-concentricity of the wire degrades the single tube resolution. The first-order
approximation the shift of the rt-relation can be predicted by the formula

δrsag(t) =
2s

r2tube
· cos(φ) · u0(t)

t∫
0

(
u0(t

′)

u0(t)
− 1

)
r0(t

′)dt′

where δrsag(t) is the shift of the rt-relation (as a function of time), s is the dis-
placement of the wire from the center of the tube, rtube is the tube radius, φ is the
angle with line through the wire and the tube center and ν0(t) the derivative of the
r − t-relation as a function of the time. If the r − t-relation is corrected using this
formula the overall impact on the momentum resolution due to the non-concentricity
of the wire is small. In the figure 2.4 we can see the deformation of the shape of
the electrical drift field caused by wire displacement and also we can notice that the
maximum value has change from 3kV to 1.6kV.
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(a) Displaced (b) Centered

Figure 2.4: Shape of the electric field with and without displaced wire.

2.2.2 Ageing Processes

Ageing is usually caused by deposits on the anode and/or cathode. These deposits
come into existence due to break up of gas molecules during normal operation of the
chamber. These new molecules and radicals can form new non volatile molecules
which then may stick to cathode or anode. There are four processes which can cause
a breakup of the molecules within the gas:

1. Collisions with the traversing particles (least frequent).

The traversing particle transmits energy during the collisions to the gas particles
which can lead to ionization, excitation or fragmentation (in case of molecules).

2. Avalanche process.

Since the energy of the electrons is sufficient to ionize atoms and molecules
(typically 10 to 15 eV required) it is also sufficient to break the bond of molecules
(typically 3 to 8 eV required).

3. Charge exchange.

It takes place when an ion collides with a molecule or an atom, which has a
lower ionization potential. Break up of chemical bonds dueto atomic charge
exchange is possible when the difference in ionizations energy between the two
species is larger than the binding energy.

4. Neutralization of the ions at the cathode.
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Figure 2.5: Picture taken with an electron microscope of a wire of a tube. The
thickness of the layer is about 2µ m

This possibility depends on the energy difference of the work function of the
surface and the ionization energy of the incoming molecule.

Polymerization of hydrocarbons is believed to be the major process leading to
ageing of a drift chamber. Long polymers are non volatile and have a tendency to
drift in the inhomogeneous drift field towards the wire due to their dipole moment.
Hydrocarbons are usually found as a coating of the wire of aged tubes. Some products
(solid or liquid) stick in the electrodes of the detector changing its behavior. This
is also the main concept of the Malter effect. One very thin layer of insulating
material is formed (mostly via polymerization) on the cathode causing the positive
ions to settle on this layer and not to be absorbed on the cathode. The ions, in
combination with the metal, create a very strong field because they are very close to
each other. The thin layer of the insulating material has the thikness of some µm.
This field is able to liberate some electrons from the surface of the cathode(reduces
the work function) and therefore to create an avalanche and a false signal.

The sputtering technique enables both chamber reanimation as well as prevention
of ageing. The basic idea is concentrated on ion bombardment of the deposits with a
chemical reactive gas (Ar−O2/99−1). This procedure is very effective and reliable in
removing those non volatile hydrocarbons from the wire by forming volatile molecules
like CO2 and CO which were then completely removed from the tube by the gas flow.
The ion bombardment is effective both at the wire and at the same at the tube wall.
On the wall, the impurities are removed in an analog way as the deposits on the wire.
This cleaning procedure for the tube wall has been prved to be the most effective of
all. Thus sputtering can be used for prevention of ageing which is caused by impurities
sticking at the tube wall.
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Figure 2.6: Wire partly reanimated using sputtering in pure argon. Some parts are
still covered with a layer of carbon and oxygen, some parts show the gold layer of the
wire. The average pulse charge of the wire at this state was about 75% compared to
a new one.



Chapter 3

The Legendre Transform

The Legendre transform is a well-known mathematical tool in Thermodynamics
and Analytical Mechanics formalism. In this chapter the Legendre transform and its
basic properties are presented. The transform relation is generalized to be valid for
both concave and convex functions. The study is concentrated to the geometrical
properties of the transform as it transforms a function to all its tangent lines.

3.1 Definition

Consider a convex function f : R → R (d2f/dx2 > 0) and a straight line of the
form y = px+ a, where p and a are the slope and intercept, respectively. For a slope
value p, the Legendre transform F (p) of the function f(x) is defined as follows [3, 1]:

F (p) = sup
x

[px− f(x)] = − inf
x

[f(x)− px] .

The notation supx indicates the maximization of the function px− f(x) with respect
to x for constant p, while infx indicates the minimization of f(x)−px with respect to
x while p is held constant. The relationship between f(x) and its Legendre transform
is denoted by:

f(x)
L←−−→ F (p).

Geometrically, the Legendre transform can be constructed in the following way
(Fig. 3.1a): We plot the function y = f(x) and for a given p we plot the line y = px.
We take the point x = x0 at which the curve f(x) is farthest from the straight
line in the vertical direction. The Legendre transform for the given p is given by
F (p) = px0 − f(x0). From Fig. 3.1, it can be derived that for a value of the slope p,
a line y = px − F (p) can be defined which is tangent to the curve y = f(x). Thus
each point (p, F (p)) in Legendre space represents a tangent line to the function f(x)
with slope p and interception −F (p) respectively.

23
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Figure 3.1: The Legendre transform, (a) for a convex and (b) for a concave function.

The Legendre transform can be also applied to a concave function (Fig. 3.1b)
where d2f/dx2 < 0, by defining it as:

F (p) = sup
x

[f(x)− px] = − inf
x

[px− f(x)] ,

where the interceptions of the tangent lines will be given by F (p).
Thus, we have a Legendre transform that can be applied to any type of functions

(either convex or concave type).
The Legendre transform of a convex function f(x) at a point x0 can be constructed

by the following equations:

p =
df

dx

∣∣∣
x=x0

(3.1)



Chapter 3: The Legendre Transform 25

F (p) = px0 − f(x0), (3.2)

where x0 is expressed as a function of p using Equation (3.1) and the result is inserted
into Equation (3.2), so the resulting expression, F (p), is only a function of p.

Usually, we solve (3.1) as of x and then, (3.2) becomes F (p) = px(p) − f(x(p))
which is the transformed function. For a concave function equation (3.2) becomes
F (p) = f(x(p))− px(p).

3.2 Examples

In the next section, some examples of Legendre transformations for some common
functions are presented with the corresponding calculations.

Parabola (f(x) = x2/2)

For f(x) = x2/2, we have: p = df(x)
dx

= x ⇒ x(p) = p, so the Legendre transform
F (p) is given by:

F (p) = px(p)− f(x(p)) = p2 − p2/2 = p2/2,

x2

2

L←−−→ p2

2

so the parabola remains a parabola in the Legendre space.

Exponential Function (f(x) = ex)

In this case f(x) = ex, so p = df(x)
dx

= ex ⇒ x(p) = ln p. The Legendre transform
of the exponential function is given by:

F (p) = px(p)− f(x(p)) = p ln p− eln p = p(ln p− 1) = ln
(p
e

)p
,

ex
L←−−→ ln

(p
e

)p
Logarithmic Function (f(x) = lnx)

This is an example of a concave function. The slope is given by:

p =
df(x)

dx
=

1

x
⇒ x(p) =

1

p
,

which gives the transformed function
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F (p) = f(x(p))− px(p) = ln
1

p
− p1

p
= −1− ln p = ln e+ ln p = − ln (ep) = ln

1

ep
,

lnx
L←−−→ ln

1

ep

Hyperbola (f(x) = −1/x)

In this case the function consists of a convex (x < 0) and a concave (x > 0) part.
We have :

p =
df(x)

dx
=

1

x2
⇒ x(p) = ±

√
1

p
, (p > 0).

For the convex part:

F (p) = px(p)− f(x(p)) = −p
√

1

p
−√p = −2

√
p.

For the concave part:

F (p) = f(x(p))− px(p) = −p
√

1

p
−√p = 2

√
p,

so the Legendre transform of the hyperbola is denoted by:

−1

x

L←−−→ −2
√
p

The graphs of the functions and their corresponding tangent line parameters are
depicted in Figure 3.2. Due to the geometrical interest (we are going to use the
Legendre transform for line reconstruction) we are interested in the line representation
of the transformed space (slope, interception) instead of the crude F (p) relation. The
reader is reminded that the intercept is F (p) for the concave and −F (p) for the convex
part. So in the case of the hyperbola where a convex and a concave part are to be
transformed, there are two parts in the slope transform space (±2

√
(p)) instead of

the Legendre transform result (F (p) = −2
√

(p)).

3.3 The Circle

The Legendre transformation of the circle is very important for the following
chapters so it will be discussed in detail. The circle can be defined by a combination
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of a convex and a concave function as shown in Fig. 3.3a. The equation of a circle
with center (x0, y0) and radius R is given by:

f(x) =


f1(x) = y0 +

√
R2 − (x− x0)2,

f2(x) = y0 −
√
R2 − (x− x0)2,

where equation f1(x) is referring to the concave part and f2(x) to the convex part.
In the concave case the Legendre transform will be:

F1(p) = sup
x

[f1(x)− px] , p =
df1
dx
.

The derivative p = df1/dx will be:

p = − x− x0√
p2 − (x− x0)2

⇒ x = x0
|p|R√
p2 + 1

.

For the concave case, the sign (−) is correct because for x > x0, p < 0 and for x < x0,
p > 0 (Fig. 3.3a), so x = x0 − pR

√
p2 + 1 is used for the Legendre transform which

is:
F1(p) = f1(x)− px = y0 − x0p+R

√
p2 + 1,

so the circle becomes a hyperbola.
As mentioned above, each pair (p, F (p)) defines a tangent line to the circle. For

a better description it would be more appropriate to express the line equation by its
canonical form r = x cos θ+ y sin θ (Fig. 3.3b), so p = − cot θ and F (p) = r/ sin θ. In
this case, the Legendre transform becomes:

r

sin θ
= y0 + x0

cos θ

sin θ
+

R

sin θ

⇒ r = x0 cos θ + y0 sin θ +R = r0 cos(θ − φ) +R, (3.3)

where r0 = (x20 + y20)1/2, and φ = arctan(y0/x0). This equation represents a sinogram
in the r, θ Legendre transformation space as shown in Fig. 3.3c. Following the same
steps for the convex case, it can be shown that the Legendre transform, in this case
it will be:

F2(p) = x0p− y0 +R
√
p2 + 1,

and in the (r, θ) representation:

r = x0 cos θ + y0 sin θ −R = r0 cos(θ − φ)−R. (3.4)

Therefore, using equation (3.3) and (3.4) the Legendre transform of the circle is
reduced to:
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f(x)
L←−−→

{
r = x0 cos θ + y0 sin θ +R, for concave,

r = x0 cos θ + y0 sin θ −R, for convex.
(3.5)

It is worthwhile mentioning that when the circle reduces to a point, in the limit
of R → 0, the Legendre transform is reduced to the Radon/Hough transform (as
described in Appendix A) of the point (x0, y0), providing us with a single sinogram
in the (r, θ) space. Hough transform is a well known technique in pattern recognition
which is used very much in image recognition , PET Tomography and other appli-
cations. In this case, the Legendre transform represents all the possible lines going
through the point (x0, y0).

3.4 Properties

The Legendre transform is a non-linear transform. In this section, some basic
properties will be described.

Scaling (af(x)
L←−−→ aF (p/a))

Assuming that f(x)
L←−−→ F (p) we calculate the Legendre Transform of g(x) =

af(x):

G(p) = px− g(x) = px− af(x) = a
(p
a
x− g(x)

)
= aF

(p
a

)
Stretching (f(αx)

L←−−→ F (p/α))

Let g(x) = f(αx),

G(p) = px− g(x) = px− f(αx) =
p

α
(αx)− f(αx) = F

( p
α

)
Translation (f(x− α)

L←−−→ F (p) + pα)

If g(x) = f(x− α), the Legendre transform will be :

G(p) = px− g(x) = px− f(x− α) = p(x− α) + pα− f(x− α) = F (p) + pα

Linear Addition (f(x) + bx+ c
L←−−→ F (p− b)− c)

For g(x) = f(x) + bx+ c, we get:

G(p) = px− g(x) = px− f(x)− bx− c = [(p− b)x− f(x)]− c = F (p− b)− c
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Young’s Inequality(px ≤ f(x) + g(p))

Two functions f and g are called dual in the sense of Young if they are the
Legendre transforms of one another. By the definition of the Legendre Transform we
have that g(p) = supx [px− f(x)] so always:

px− f(x) ≤ g(p)⇒ px ≤ f(x) + g(p)

Involutivity (L(L(f)) = f)

Let a convex function f . The Legendre transform is: L(f) = px−f(x). One more
transformation will give:

L(L(f)) = px− [px− f(x)] = px− px+ f(x) = f.

The above proved properties of the Legendre transform are summarized in Table
3.1.

In this table, the Legendre transforms f(x)
L←−−→ F (p) and g(x)

L←−−→ G(p) are
assumed.

Table 3.1: Properties of the Legendre transform. The (df/dx)−1 denotes the inverse
derivative of f(x).

Property Result

Scaling af(x)
L←−−→ aF (p/a)

Stretching f(ax)
L←−−→ F (p/a)

Translation f(x− a)
L←−−→ F (p) + a

Linear addition f(x) + ax+ b
L←−−→ F (p− a) + b

Young’s Inequality px ≤ f(x) + F (p)
If f(0) = df/dx|x=0 = 0 F (p) =

∫ p
0

(df/dx)−1 dx
Involutivity L(L(f)) = f

3.5 Legendre Transform in higher dimensions

In the previous sections, the Legendre transform was defined for convex and con-
cave type of functions in one dimensions. Here, a generalization of the transform in
higher dimensions is presented. Let a real convex function f(x) in a multidimensional
space so f : Rn → R, where x = (x1, x2, . . . , xn) and ∇2f > 0 (convex function). The
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Legendre transform of this function, F (p) is also a multidimensional function given
by the relation:

F (p) = sup
x

(p · x− f(x)), p = ∇f(x).

The geometrical construction is very similar to the one dimension case. We will
illustrate the geometrical properties with an example in three dimensions. Let a
convex function f(x, y) : R2 → R, z = f(x, y) and a plane z = p · (x)
is described by a point in the origin (0, 0, 0) and a normal vector p. The Legendre
transform is constructed by selecting the point x on the plane such as the vertical
distance (along z axis) from the surface is maximized. For this point, the Legendre
transform is given by F (p) = p · x − f(x). This representation gives the tangent
plane to the surface f(x, y) in the demanded point. This can be derived easily if we
take the equation of a plane tangent to a surface f(x, y):

z = ∇f · (x− x0) + z0

The gradient of the surface ∇f is directed normally to the surface so the p vector
must be equal to the gradient (p = ∇f(x) and the z-offset z0 will be equal to −F (p),
very similar to the one-dimensional case. In the same way we can define the Legendre
transform for concave function by the relation:

F (p) = sup
x

(f(x)− p · x), p = ∇f(x).

where the z-offset will be given by F (p). A simple example for illustration of the
method would be to calculate the Legendre transform of a paraboloid z = f(x, y) =
(x2 + y2)/2. We have:

p = (px, py) = ∇f(x, y) =

(
∂f

∂x
,
∂f

∂y

)
= (x, y)⇒ x = p.

The Legendre transform will be :

F (p) = p · x− f(x) = p · p− f(p)⇒ F (px, py) = px
2 + py

2 − px
2 + py

2

2
=
px

2 + py
2

2

so the paraboloid remains a paraboloid in the Legendre space.
The properties of the Legendre transform that were mentioned in the previous

section are also valid for the multi-dimensional case. We will add some more properties
regarding many dimensions.

Infimal Convolution

The infimal convolution of two convex functions, f(x) and g(x) in n-dimensions
(f : Rn → R, g : Rn → R) is defined by:

(f ?inf g)(x = inf
y∈Rn

(f(x− y) + g(y)) .
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If f and g are concave function we can define the supremum convolution in the same
way:

(f ?sup g)(x = sup
y∈Rn

(f(x− y) + g(y)) .

It can be proven that the Legendre transform of the infimal convolution is:

(f ?inf g)(x
L←−−→ F (p1) +G(p2),

where f(x)
L←−−→ F (p1), g(x)

L←−−→ G(p2), with p1 = ∇f(x),p2 = ∇g(x)
This result can be generalized for n-convex functions f1(x), f2(x), . . . , fn(x):

(f1 ?inf f2 ?inf . . . ?inf fn)(x)
L←−−→

∑
Fi(pi),

where fi(x)
L←−−→ Fi(pi(x), with pi = ∇fi(x)

Adjoint Convexity

Let X ⊆ Rn a real vector space and X? ⊆ Rn the dual space of X, as derived from
the Legendre transform. The elements of the two vector spaces will be denoted by x
and p respectively. The dual pair < p,x > is defined as

< p,x >: X? ×X → R,

with p ∈ X? and x ∈ X.The dual pair < p,x > is actually the inner product of the
vectors x and p. For a function,

f(x) : X → R,x ∈ X,

we can define the adjoint convex function f ? as:

f ?(p) = sup
x

[< p,x > −f(x)] = − inf
x

[f(x)− < p,x > .

For this generalized transform the Young’s inequality can be generalized to Young-
Fenchel inequality:

< p,x >≤ f(x) + f ?(p).

3.6 Legendre transform of order k

In a n dimensional space, the Legendre transform of order k (where k < n) can
be defined by the function:

F (k)(p1, p2, . . . , pk, xk+1, xk+2, . . . , xn) = f(x1, x2, . . . , xn)−
k∑
i=1

xipi, pi =
∂f

∂xi
. (3.6)
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The differential of the Legendre transform will then be:

dF (k) = df −
k∑
i=1

d(xipi)⇒ dF (k) = df −
k∑
i=1

pidxi −
k∑
i=1

xidpi,

where,

df =
n∑
i=1

∂f

∂xi
dxi =

n∑
i=1

pidxi ⇒ dF (k) =
n∑
i=1

pidxi −
k∑
i=1

pidxi −
k∑
i=1

xidpi

=
k∑
i=1

pidxi +
n∑

i=k+1

pidxi︸ ︷︷ ︸∑k
i=1 pidxi

−
k∑
i=1

pidxi −
k∑
i=1

xidpi

⇒ dh(k) =
n∑

i=k+1

pidxi −
k∑
i=1

xidpi

⇒ dF (k) = −
k∑
i=1

xidpi +
n∑

i=k+1

pidxi. (3.7)

From relation (3.7), it can be derived that for the transformed variables (i ≤ k),
the derivative of the order k Legendre transform with reference to the variable pi is:

∂F (k)

∂pi
= −xi,

and for the non-transformed variables xi,

∂F (k)

∂xi
= pi.

3.6.1 Thermodynamic Potentials

The Legendre transform is applied in thermodynamics for deriving the thermody-
namic potential. The first law of Thermodynamics, that expresses the conservation
of energy, relates the variation of the internal energy of a system dU , with the respec-
tive variation of Heat, dQ, and work, dW :

dU = dQ− dW.

For a gas that is under a reverse process, the first law of thermodynamics can be
expressed as:
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dU = TdS − PdV, (3.8)

where U = U(S, V ) is a function of the entropy, S, and volume , V , and the temper-
ature , T , and pressure, P , will be:

T =

(
∂U

∂S

)
V

, P = −
(
∂U

∂V

)
S

.

If the function f(x1, x2) is considered as the internal energy U , so that

f(x1, x2) = U(S, V ), x1 = S, x2 = V, p1 =

(
∂U

∂S

)
V

= T, p2 =

(
∂U

∂V

)
S

= −P,

the first order Legendre transform will generate the function

U − TS ≡ F,

and the differential of F is given by (3.7)

dF (1) = −x1dp1 + p2dx2 = −SdT + (−P )dV

⇒ dF = −SdT − PdV,

where F is the Helmholtz free energy. The second order Legendre transform will give

F (2) = f(x1, x2)−
2∑
i=1

xipi = f(x1, x2)− x1p1 − x2p2

⇒ F (2) = U − TS − (−P )V = U − TS + PV ≡ G.

The G function is the Gibbs free energy. The differential of G is given by (3.7) as:

dF (2) ≡ dG = −
2∑
i=1

xidpi = −xidp1 − x2dp2

⇒ dG = −SdT + V dP.

In this example, the second order Legendre transform of U(S, V ) was computed to
be the Gibbs free energy, G(T, P ).
Another example would be to start fromG(T, P ), and consider it as the initial function
f(x1, x2) ≡ G(T, P ):

x1 = T, x2 = P, p1 =

(
∂G

∂T

)
P

= −S, p2 =

(
∂G

∂P

)
T

= V.
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In this case, the first-order Legendre transform will be:

F (1) = f − x1p1 = G− (−S)T = U − TS + PV + TS = U + PV ≡ H,

where U + PV ≡ H is the enthalpy of the gas. The differential of H is according to
(3.7):

dF (1) = −x1dp1 + p2dx2 = −(−dS)T − V dP

⇒ dH = TdS + V dP.

The second order Legendre transform is again calculated as:

F (2) = f − x1p1 − x2p2 = G− (−S)T − V P = U − TS + PV + TS − PV = U,

and its differential is:

dF (2) ≡ dU = −x1dp1 + x2dp2 = −(−dS)T − PdV

⇒ dU = TdS − PdV.

The first and second laws of Thermodynamics where proved via the Legendre trans-
form.

3.6.2 Lagrange and Hamilton equations

In analytical mechanics, the derivation of the Hamiltonian H(qi, pi, t), from the Lan-
gragian , L(qi, q̇i, t) , can be expressed by a 2 − n order Legendre transform for n
degrees of freedom:

L(q1, q̇1, t)
L−−→ h(qi, pi, t),

where:

F (2n)(qi, pi, t) = L(qi, q̇i, t)−
∑
i

q̇ipi ≡ −H(qi, pi, t), or H(qi, pi, t) =
∑
i

q̇ipi−L(qi, q̇i, t),

which means that the transformation leads directly to Hamilton equations:

∂H

∂pi
= q̇i,

∂H

∂qi
= −∂L

∂qi
= −ṗi.
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Figure 3.2: Some simple functions and their tangential representation that is derived
by the Legendre transform
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Figure 3.3: (a) Representation of the circle by a convex and a concave function,
(b) Tangent Lines in the canonical form equation, (c) Representation of the circle
in Legendre transformation space. The circle corresponds to two sinograms in the
Legendre transformation space.
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y
x

z
=

f(
x

,y
)

px-f(x)

Figure 3.4: Legendre Transform in two dimensions



Chapter 4

Pattern Recognition in Drift Tube
Chambers

This chapter describes a new track reconstruction method applied in drift tube cham-
bers using the Legendre transform. The method is designed to provide optimum ef-
ficiency in muon reconstruction for a broad band of energy cases. Another goal is
robustness again noise produced by high cavern background. The method is tuned
and applied to the monitored drift tube chambers of the ATLAS experiment.

4.1 The MDT chamber reconstruction problem

As described in Chapter 2, the drift tube chamber electronics provide information
about the drift time of the electrons that are ionized by a passing particle. After
calibration, a so called r− t relation provides the relation between the drift time and
drift distance. The drift distance is the vertical distance of the particle track, with
reference to the center of the MDT tube. The information about the position of the
particle for each tube is therefore defined by a circle concentric with the tube and
radius equal to the drift distance. Taking in account the errors of the electronics, the
calibration relation and the inefficiencies in the wire positions during the construction
of the MDT chambers, there is an error propagated to the drift radius for each circle.
The MDT chambers in ATLAS, are placed inside a magnetic field so the tracks are
curved by the bending power of the toroid magnet. However, in the chamber local
coordinate system, the tracks (for transverse momentum values of pt > 2 GeV ) can
be approached as straight lines. The problem is therefore centralized on finding the
best common tangent between the drift circles.

38
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4.2 The Legendre transform approach

According to Chapter 3, the Legendre transform space of a convex function f(x)
represents all the tangent lines of the function f . This approach was also generalized
for concave functions. In the MDT segment reconstruction case, we seek the common
tangent of a set of circles. By transforming each circle in the Legendre space, we
get all its tangent lines. The intersection points of the curves in the Legendre space
represent the common tangent lines to the circles. Therefore, finding these points
leads to the extraction of the reconstruction lines. A circle of center (x0, y0) and
radius R is transformed in the Legendre space according to equation (3.5) to :

r = x0 cos θ + y0 sin θ ±R,

which represents two sinograms in the Legendre space ( r and θ are the parameters
of the line in the canonical form equation (Fig. 3.3b) ). A set of circles will therefore
transform to a set of sinograms, where the inverse Legendre transform of the common
point will give the demanded line (Fig. 4.1).

4.2.1 The Histogram method

The most efficient way to provide a software implementation of the Legendre space
is the representation of the transformed space with a histogram. This method is
most used in Image Processing where other histogram algorithms like the Hough
transform (Appendix A) are very common. This method denotes that each sinogram
will be represented by a set of bins in a two-dimensional histogram. For each circle
(sinogram) to be added, new bins are added and peaks start to form. The search
for maxima in the histogram extracts the candidate lines. The quantization of space
which is introduced by the histogram binning results the forming of clusters around
the maxima. The bin size selection is very important about the clusterization. One
basic criterion about the selection of the bin size is proportionality. The Legendre
space histogram is tuned so that the gain of each bin represents the number of circles
that contribute a tangent line. This piece of information can be used in later steps of
the line extraction and it will be discussed in next sections. Each circle is transformed
by computing the value of r parameter for a given θ. The θ parameter is scanned
along the histogram limits and one value is evaluated for each bin. The histogram
limits can be selected to allow a specific set of lines. This operation prevents the
algorithm to reconstruct unwanted horizontal lines and can provide optimization by
allowing lines, coming only from an area around a known interaction point.
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4.2.2 Selecting the bin size

Considering the error of the drift radius, R and the θ step while transforming in
the Legendre space, the error of the r parameter is given by:

δr =

√(
dr

dR
δR

)2

+

(
dr

dθ
δθ

)2

⇒ δr =
√
δR2 + (x0 sin θ − y0 cos θ)2δθ2 (4.1)

In equation (4.1), the dependence of the error of the r parameter by the position
(x0, y0) and angle θ is revealed. For a homogeneous behavior in the chamber, this
dependence must be minimized. This demand can be applied, if a small θ step is
selected. This is very important for a high efficiency in deriving the correct line
between the circles (Fig. 4.2.a). In this application, a θ step of 2 × 10−4 radians
was selected. For small δθ, equation (4.1) becomes δr ≈ δR so the bin size depends
only on the error of the drift radius. This error obeys to a complicated distribution
because of the non-linearity of the r − t relation, and is depicted in Fig.4.2.b . From
the distribution of the error, it can be derived that for most of the error values
δR < 0.2. This means that, if the size is selected to be δr = 0.2, the bin (in most
cases) will contain the info of the circle with radius R but also of the circles with radii
R+ δR, R− δR. If one of the above circles is not included because the error is larger,
additional bins are added to include the error information. With this technique, a
line maximum is formed in the Legendre space even if the original circles (without
including the errors) do not have a common tangent. In other words the sinogram
line in Legendre space has a width according to the drift error of the circle under
transformation. According to the above, one could select a larger bin size to include
all the error information. But this is not encouraged, because tangent lines are formed
also for circles that do not correspond to a track, and this results to an increase in the
fake rate of the algorithm (fraction of reconstructed segments that do not correspond
to a track). Figure 4.3 depicts an event on eight tube layers (a) and the corresponding
Legendre transform histogram(b). Histogram 4.3.c shows the legendre space zoomed
around the maximum. It is understood that the quantization of space results on a
cluster of maxima on the Legendre space. This effect creates the need of a clustering
algorithm to extract the lines from the Legendre space. This is described in the next
section. Finally Histogram 4.3.d shows the Legendre histogram in polar coordinates.

4.2.3 Clustering in the Legendre space

The properties and behavior of the Legendre transform implemented with the
Histogram method was discussed in previous sections. So in this stage it is presumed
that a histogram exists which hosts the Legendre space. In this Histogram there
are some clusters that correspond to some demanded lines (there might be more
than one). These clusters consist of the bins with the best-estimated lines and some
neighboring bins that correspond to some lines that are matched to a subset of the
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drift circles that contribute to the track. This description leads to the need of a
smart-clustering algorithm and its specifications:

• A threshold must be applied to throw lines that consist of a very small number
of hits.

• For each cluster, only the bins that have a gain equal to the maximum of the
cluster are reconstructed.

• Ambiguous lines must both be reconstructed.

• Cluster separation is needed for multi track events.

The first rule introduces a cut on the gain of the histogram. Because of the proportion-
ality applied during the transformation (section 4.2.2), this threshold will correspond
to the number of circles that contribute to the track. This value can be selected at
threshold = 3 because three circles can define one common line. So the first proce-
dure on the clustering is to drop all hits with gain < 3. After this procedure the
histogram contains only the clusters towards reconstruction (Fig. 4.4.a) The second
rule describes the cluster structure. Bins inside the cluster with a lower gain than the
maximum bin must be dropped because they will correspond to one neighboring line
that has less drift circles that the maximum (Fig 4.4.b). If a neighboring bin has the
same gain with the maximum bin there are two cases:

• The bin is a nearest neighbor to the maximum bin so it corresponds to the same
line and it is dropped.

• The bin is not a nearest neighbor.

In the second case, there might be an ambiguous case. As depicted in Fig 4.4.c ,
there is a possibility that a set of drift circles define a couple of ”ambiguous” lines.
These lines have the same circles but different line parameters (r, θ). Both must be
kept for not loosing to the reconstruction efficiency. The last criterion demands that
the algorithm must support cluster separation. After processing a number of bins
and extracting the lines, the clustering must continue to next maximum and restart
association of bins until all the bins with gain over threshold are processed.

The cluster algorithm flow diagram is depicted in Fig 4.5. The clustering algo-
rithm provides a set of reconstructed lines from the Legendre space. It is possible to
introduce one post processing step to the whole reconstruction algorithm for further
increase in performance.
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4.2.4 Drift circle association and least square fit

After clustering, we can correlate the lines to the drift circles that are related to
them. For the extraction of the best line equation in the detector coordinate system,
it is usual to perform a least-square fit of the line to the nearby circles. A circle is
matched to the legendre line if

ri ≤ 5σ,

where σ is the error of the drift distance which is usually known via the calibration
(r-t) relation and ri is the residual between the line and the circle. The best fit to
the circles can be extracted by minimizing,

χ2 =
∑ (di −Ri)

2

σ2
.

This cannot be solved analytically, so a Newton Raphson in two dimensions must be
utilized to retrieve the line parameters. This procedure is described in [14] and it
won’t be used until the next chapter where a very accurate estimation of the line is
needed. This chapter is concentrated into the patter recognition part of the algorithm,
so a draft fit will be introduced.
Instead of fitting the circles, it is possible to fit the line between the points x, y that
obey

d[(x, y), L]− d[(x, y), (x0.y0)] = R,

where d[(x, y), L] is the distance between the point (x, y) and the line, and d[(x, y), (x0, y0)]
is the distance between the point (x, y) and the circle of center (x0, y0) and radius R.
For the calculation of the points for χ2, we assume that the line produced by the
transform has the form y = αx + β. Let ri the radius of the circle (hit) and (x0, y0)
the center of the tube. The coordinates of the points O, N that belong to the vertical
line to the track can be resolved by the equations:

xi = x0
ri√
α2 + 1

, yi = y0 ∓
1

α

ri√
α2 + 1

.

The point with the minimum distance from the reconstructed line (in this example,
the point is represented by O in Fig. 4.6) is selected for the χ2 test.

4.3 Object Oriented implementation

For a software implementation of the Legendre algorithm a stand-alone Monte-
Carlo environment was built. The development language was selected to be C++
because it provides high performance and parts of the algorithm can be integrated to
other environments. In the next chapter some classes are used for implementation of
the algorithm in the ATLAS software. The main classes of the algorithm are depicted
in Fig. 4.7.
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4.3.1 Core classes

The main classes of the algorithm are described below.

SegmentFinder

The Segmentfinder class is the heart of the algorithm. It receives the geometry
of the chamber and a set of drift tube hits and extracts the Segments. First of
all, it calls the Transform class by providing the hits and receiving the peaks in the
Legendre space. Then it calls the Clustering class to perform clustering of the peaks
and extract the demanded lines. Finally it performs some post processing for fine
tuning the segments.

Transform

The Transform class provides the Legendre transform. It creates a 2D histogram
with the Histogram class and specifies its dimensions by the chamber dimensions
defined by geometry. For each hit it creates the Legendre sinogram and stores it in
the Histogram. Then it extracts the hits with gain over the specified threshold.

Clustering

The Clustering class receives the bins over threshold from the Transform class and
performs the clustering algorithm. It utilizes the Line class to return the clusterized
peaks with the form of line objects.

4.3.2 Secondary classes

In this section all the additional classes that contribute to the package are de-
scribed.

Line

The line class holds the description of the line both in the canonical form of Fig.
3.3b and of the form y = ax+ b. It also utilizes some functions to compute distances
between line and points and it also contains the Fit method to fit the line to a set of
drift circles.

Geometry

The Geometry class provides the reference and control of the chamber geometry.section
The Chamber geometry includes information about the tube diameter , the number
of tube layers per chamber and the number of tubes per layer. The class contains
some methods that provide the coordinates of each tube.
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Generator

The generator class creates the Monte-Carlo tracks in the detector. By using the
geometry class it resolves the detector acceptance and simulates particle tracks that
pass through the chamber. The next step after the creation of a track is the compu-
tation of drift radii for the nearby tubes. The Generator class computes the distance
between the line and the tube center and associates a circle to each candidate tube.
After the hit association, the algorithm creates a Gaussian smearing on the hit radii,
as a simulation of the error of the calibration relation. Moreover, noise can be created
by random hits in the detector.

Display

The Diplay class provides all the essential tools for drawing the hits and lines. For
its implementation, some classes of the ROOT package have been included.

Statistics

The Statistics class provides all the tools for the performance measurements of
the algorithm. It provides Histogramming (via ROOT again), Performance studies,
Memory measurements and timing.

4.4 Performance study

In the previous section, a novel based reconstruction algorithm based on the Leg-
endre transform was presented. In this section the performance of the algorithm will
be tested on a stand-alone controlled Monte - Carlo environment. In order to study
the method, a Monte Carlo algorithm is used to produce random lines and create the
hits for each tube. As an example, the algorithm is tested in the Monitored Drift
Tube chambers of the ATLAS experiment, which is a straw type chamber. In this
study, a Drift Chamber of eight tube layers with 20 tubes each, is simulated. The
diameter of each tube is selected to be 3 cm. After the hit calculation, a Gaussian
measurement error can be applied to each hit. Moreover, random hits can be gen-
erated to simulate noise hits in the detector. The study is performed for single and
multi-track events using Gaussian measurement error and noise as parameters. For
each case, the reconstructed line parameters are calculated. The parameters used
for comparison, are the slope tan θ and the offset x0 (the line is parameterized un-
der the equation y = (x − x0) tan θ, where the interception of the line is −x0 tan θ).
The residuals (see Fig. 4.6) between the Monte Carlo drift radii and the radii, as
reconstructed for each hit after applying the method, are also calculated as a global
indicator of the resolution of the tracking algorithm.
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4.4.1 Resolution

Single track events are simulated in random angles θ and offset x0 from a source
that is located 1 m away from the detector. The events are reconstructed with the
above described method and the reconstructed values are compared to the original
values. Fig. 4.8 shows the performance studies for single track events. Histograms
(a), (b), and (c) in Fig. 4.8 show the differences between the Monte Carlo and the
reconstructed events of the values of the slope tan θ, the offset x0, and the residuals.
The residual error (resolution) is 7.80±0.07 µm which gives the intrinsic performance
of the method. The next three histograms (d), (e), (f) show the same parameters
with an applied smearing of 100 µm to each hit. The resolution as shown in Fig. 4.8f
is 88.09±0.50 µm, very close to the smearing factor of 100 µm. Histogram 4.8h shows
the residual error vs smearing for smearing factors up to 500 µm. As demonstrated
by this histogram, the method shows stability providing a resolution that follows
the smearing factor. In the next step a random noise is applied into the detector.
Noise is simulated as randomly distributed hits with random radii up to the radius
of the tube. In the case of multiple hits on a tube, the hit with the smaller radius
(earlier signal) is taken into account, as it is supposed to be happening according to
the readout electronics of the detector. The graph 4.8i shows the resolution vs noise.
Data are simulated with extra noise hits up to 600% and with a smearing factor of
100 µm to each hit. The method seems to be robust in noisy environments and could
be very suitable in reconstructing tracks for chambers installed near the beam line of
an experiment, where obviously the noise is high. Finally, diagram 4.8g shows a very
good correlation between the Monte-Carlo hit radii and the reconstructed ones with
a smearing factor of 100 µm.

4.4.2 Reconstruction Efficiency and Fake Rate

The resolution of the algorithm and its robustness was presented in the previous
section. In this section, the study is continued with the estimation of the reconstruc-
tion efficiency and the fake rate of the algorithm. The reconstruction efficiency is
defined as:

Efficiency =
Nmatch

Nsim

,

where Nmatch is the number of reconstructed segments that were matched to the
simulated segments and Nsim is the number of simulated segments. The matching
criterion between two lines of the form y = tanφ1(x− x1) and y = tanφ2(x− x2) is:

|φ1 − φ2| < 0.05 rad, |x2 − x1| < 0.1 mm.

The fake rate is defined as:

Fake Rate =
Nfake

Nmatch

,
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where Nfake is the number of segments that are not matched to a simulated track.
A number of 2000 straight tracks was studied with a smearing of 100 µ m and a

noise level ranging from 0− 1000% . Two different threshold values for the minimum
number of circles that can be associated to a Line where tested (the standard threshold
of 3 and a more strict threshold of 6). The results are presented in Fig. 4.9. The
algorithm shows very nice performance on the loose-cut configuration. The fake rate
starts to become significant over 500 % noise and the reconstruction efficiency is not
affected by noise at all. In the more tight configuration the fake tracks are eliminated.
A loss in efficiency is observered over 500 % of noise hits. Therefore, we note that the
algorithm shows great resistance to noise in both configuration. In occasions with very
high background, a tighter cut can be applied to eliminate the fake tracks. Generally,
the threshold can be tuned to provide different pairs of reconstruction efficiency and
fake rate. But the fake rate is always proportional to the reconstruction efficiency. It
must also be noted that in this study, all possible hits have been included for each
event. In the real case, presented in the next chapter there is the possibility to have
only three or four hits in eight layers of tubes that have to be associated to a line so
in the general case, a low threshold is preferred. However in case of very high cavern
background, the noise level becomes very high, which results in the need of specific
tuning for efficient tracking.

4.4.3 Computing performance

The Legendre tracking algorithm was proved to be a very efficient algorithm in
track reconstruction. In this section, its computing performance will be tested. His-
togram algorithms (for example the Hough transform) tend to consume a very large
amount of memory to host the histogram. The bins are usually selected to be very
small for high resolution and according to the dimensions of the image (hit map)
the histogram may become very large. Moreover the time to extract the peaks from
the histogram consumes CPU time which in the best case is linearilly proportional
to the histogram size. For the tangent line reconstruction problem, the Legendre
transform is proven to provide a very good performance in Memory and CPU time
which makes it practically applicable to software implementations. The reason is
that the Legendre transform holds the minimum info to its histogram needed for
the reconstruction. This can be explained by a comparison to the Hough transform
is a standard implementation. The Hough transform of a point is a sinogram in the
Hough space if the Line is defined in the well-known canonical form (Fig. 3.3b). Each
point in the histogram represents a line. So a point is transformed to all the possible
lines passing from it. A Hough transform of a circle would be the transform of all
its points which corresponds to a large number of sinograms. In the Legendre case,
we have only one sinogram per circle which means that in the Drift tube problem
case, the Legendre transform is a very small subset of the Hough transform with the
relative consequences in computing resources. The method to test the performance



Chapter 4: Pattern Recognition in Drift Tube Chambers 47

of the legendre algorithm is very simple. For each event, we measure the size of the
histogram and the time processed. The histogram is actually represented by a map
object of the C++ STL (Standard Template Library). The size of the histogram is:

M = number of map entries× size of map element

The results of the analysis are presented in Fig.4.10. From histograms 4.10.a, 4.10.c, it
can be extracted that the memory consumption and the size of the Legendre algorithm
have a normal almost linear behavior as the number of the drift circles to be processed
is getting larger. The algorithm performs a reconstruction circle in reasonable linear
time so it can be applied for mass offline reconstruction.

4.5 Summary

In this chapter,a new reconstruction algorithm, based on the Legendre transform
was studied. The algorithm shows very nice performance in reconstruction efficiency
and fake rate and could be a very efficient solution in noisy environments (for exam-
ple in detectors near the beam line or in high luminosity where cavern background
becomes important). The studies on this chapter were done in a stand-alone Monte
Carlo environment for testing all the possibilities regarding the algorithm perfor-
mance. Some reconstruction examples of the algorithm in very noisy conditions are
presented in Figure 4.11. In the next chapter we proceed with a more realistic study
using GEANT simulated data from muons in the ATLAS Detector.
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Figure 4.1: Drift circles produced by track and Legendre transform reconstruction
principle
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Figure 4.2: (a). θ step while resolving the line (b). Drift error of the MDT Chamber
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(a)Tube front view
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Figure 4.3: (a). Example event (Drift circles on track). (b). Legendre space (c).
Legendre space (zoom in maximum) (d). Legendre space (polar coordinates)
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Figure 4.4: (a). Legendre space after thresholding. (b). Lines created by drift tube
combinations (c). Ambiguous Lines
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Figure 4.5: Cluster algorithm flow diagram
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Figure 4.6: Selection of points for the draft χ2 fit
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Figure 4.7: Diagram of the main classes of the algorithm and flow control.
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Figure 4.8: Performance results for single track events. Histograms (a), (b), (c)
present the differences between the Monte Carlo and the reconstructed events of the
values of the slope angle, offset, and the residuals respectively. The residual error
(resolution of the track reconstruction) is 3.26± 0.03 µm. The next three histograms
(d), (e), (f) show the same parameters with an applied smearing of 100 µm to each
hit. The standard deviation of the fit in histogram (f) is 88.09 ± 0.50 µm. In graph
(g), the correlation between the Monte Carlo generated radii and the reconstructed
ones with a smearing of 100 µm is plotted. In graph (h), the residual error in µm
versus the smearing in µm, for smearing factors up to 300 µm is plotted. Finally, in
graph (i), the resolution versus noise using hits with a smearing factor of 100 µm is
plotted. The data are simulated with noise up to 600%.
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Noise level (%)
200 400 600 8001000

H
is

to
g

ra
m

 S
iz

e
(k

B
s
)

50

100

150

200

250

300

350

400

 / ndf 2χ  0.07036 / 3

p0        37.77

p1        0.4468

p2        -0.0001123

 / ndf 2χ  0.07036 / 3

p0        37.77

p1        0.4468

p2        -0.0001123

(a) Memory size

Noise Level (%)
200 400 600 800 1000

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

50

100

150

200

250

 / ndf 2χ  0.05531 / 4

p0        32.37

p1        0.1746

 / ndf 2χ  0.05531 / 4

p0        32.37

p1        0.1746

(a) Execution Time

Figure 4.10: (a) Size of the Legendre histogram space in memory, (b) Execution time
of the algorithm, as a function of noise level



Chapter 4: Pattern Recognition in Drift Tube Chambers 57

Noise = 100 %

 [rad]θ

-0.35 -0.3 -0.25 -0.2

r 
[m

m
]

-100

0

100

200

300

400

500

Legendre space

Noise = 300 %

 [rad]θ

-0.35 -0.3 -0.25 -0.2

r 
[m

m
]

0

100

200

300

400

500

Legendre space

Noise = 500 %

 [rad]θ

-0.35 -0.3 -0.25 -0.2

r 
[m

m
]

-100

0

100

200

300

400

500

Legendre space

Figure 4.11: Examples of two track separation in noisy conditions and the corre-
sponding Legendre transforms



Chapter 5

A Legendre Segment finder for the
ATLAS MDT System

This chapter describes the implementation of the Legendre finding algorithm for
a real application - segment reconstruction in the Monitored Drift Tube Chambers
of the ATLAS experiment. The main algorithm tools are common with the previous
classes but some tools from the ATLAS software(ATHENA) are used for integration
of the algorithm to the main ATLAS Reconstruction Framework.

5.1 Description of the Algorithm

The algorithm is hosted in a main algorithm class NTULegendreSegments that is de-
rived from the ATHENA class DCMathSegmentMaker [13]. This class receives a set
of Drift Circles and exports the reconstructed segments which are described by the
common class MuonSegment. The transformation and clustering interfaces described
above have been integrated to the NTULegendreSegments class to provide segments
produced by the Legendre transform. For each event the data are processed for each
chamber independently. There is only a special case regarding the possibility that a
track has shared hits in two neighboring chambers. In this case hits in neighboring
chambers are included for the segment finding. The drift circle coordinates are trans-
formed to the local chamber coordinate system where the Legendre transformation is
to be applied. The limits of the Legendre histogram allow a range of 1 rad around the
angle value of π/2. In the special case where a road defined by trigger hits exists and
passes through the chamber, the limits of the Legendre histogram are tuned around
this road. After the transformation, the peaks of the histogram are extracted and
imported into the Clustering interface. Finally, after the Clustering, the Segments
are created.

58
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Hit association

For the creation of segments the circles are associated to the reconstructed lines. The
association criterion is:

|∆r| = |di − ri| < 5σ

where di is the distance between the line and the tube center and ri is the radius of
the drift circle. if ∆r > 5σ the hit is marked as out of time. If ∆r < −5σ the hit is
marked as delta and usually it is created by a δ-electron passing near the wire (closer
track than the muon). With this procedure the drift tubes for each line are collected
and segments are formed.

χ2 fit and segment quality cuts

After forming the segments, a χ2 fit is applied. The fit is done by minimizing

χ2 =
|di − ri|2

σ2
,

where di,ri and σ are defined in subsection 5.1. The procedure of performing this fit
is already developed in the ATLAS muon spectrometer reconstruction software and
is described in details in [14]. The main idea is a Newton-Raphson method in two
dimensions. After the fit the circles are re-associated to the segments with the above
criteria. One more criterion for accepting the segment is the χ2/Ndof of the fit which
is demanded to be lower that 10. Ndof is the number of the degrees of freedom of
the fit which is equal to Ndof = N − 2 where N is the number of circles to be fitted
and the subtraction by 2 refers to the two parameters of the line to be estimated.
After processing all the segments, the accepted segments are sorted according to the
associated hits and the χ2/Ndof value.

Segment cleaning

The final step before extracting the segments is segment cleaning. A segment cleaning
procedure already exists in the ATLAS software (defined in DCMathSegmentMaker
algorithm [13]) so some of this tools are imported to the NTULegendreSegments
package described here. The main procedures in segment cleaning process are:

• Dropping of hits that are responsible for high χ2/Ndof and reavaluation of seg-
ment.

• Dropping of segments that are subset of other already accepted segments.

• Resolving ambiguities.
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Regarding ambiguities, ambiguous segments are segments that are associated to the
same hits but differ in the line parameters( section 4.2.3). In the case of ambiguous
segments, both are accepted but they are marked as ambiguous for resolving the
ambiguities in next steps of the track reconstruction.

Summarizing all the above procedures have been included to result to a new seg-
ment finding package for the MDT chambers of the ATLAS Muon spectrometer. This
package can be inserted for segment finding in a modular way to any existing recon-
struction package that supports modularity (Moore, MoMu). The algorithm receives
the drift circles from the Calibration framework, reads the Geometry form the De-
tector Description database and outputs the segments in a common definition where
the segments can be processed for the steps of segment association to roads, track
creation and momentum output. Moreover using the ATLAS software python-style
customization of jobs the algorithm can be fully tuned via a configuration file regard-
ing the segment quality cuts, the thresholds, and Legendre histogram segmentation.

5.2 Reconstruction performance in the ATLAS sim-

ulation framework

For the performance studies of the algorithm, the ATLAS Simulation framework
was used. Data samples from a broad Momentum spectrum were studied and the
algorithm was compared to the basic reconstruction algorithms of the muon spec-
trometer. The data samples that were used are listed in table 5.1.

Table 5.1: Muon data samples used in the analysis

Sample Description Events
pt = 100 GeV High pt single tracks 2000
pt = 20 GeV High pt single tracks 2000
pt = 2 GeV Low pt single tracks 2000

pt = 100 GeV /pile up High pt single tracks 1000
with cavern background

In the samples with pt > 20 GeV, the tracks are behaving like straight lines inside the
chamber so the maximum reconstruction efficiencies are obtained. In the low pt cases
(pt < 10GeV) the curvature of the track becomes significant, something that makes
the straight line approximation difficult. For very energetic muons (pt > 100 GeV),
electromagnetic showers are produced from the muon tracks and the reconstruction
problem becomes difficult. The secondary particles are detected in the tubes and a lot
of fake muon tracks appear. The cavern background case is the case that motivated
this work. Cavern background is explained by multiple hits inside the detectors that
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are not connected to the presence of the muon. These hits can be created by energetic
electrons that can pass one or two chambers and give track information. This effects
will be visible once the accelerator starts to operate in high luminosity.
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Figure 5.1: (a) Difference in the R coordinate of the segment and the simulated track.
(b) Difference in the z coordinate of the segment and the reconstructed track. (c)
Difference in the θ angle between the segment and the simulated track (c) Residuals

5.2.1 Performance on a pt = 20GeV sample

The comparison to the existing reconstruction program can be accurately made
only with the Moore and MoMu reconstruction packages where the comparison can
be made only in the segment-finding level. Muonboy package (which provides very
nice results as well) is a stand-alone program including all the reconstruction steps
so the comparison with the Legendre algorithm in the MoMu package can be biased
by some advantages of the road or track creation algorithms. The MoMu package
contains the DCMathSegmentMaker [13] segment finder which uses the same idea
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Figure 5.2: (a). Matched reconstructed segments per event (b) Number of fake seg-
ments per event (c) Number of hits on segment for matched segments (d) number of
hits on segment for fake segments.

with Moore segment finder but in the MoMu case the algorithm supports segment
cleaning and refining, something that results to better performance.
The first study is performed on a sample of single track muons of pt = 20GeV muons
which is a very important region on the pt spectrum because the mean value of the
transverse momentum of muons produced by tt̄ and simulated Higgs decays are near
this value. The comparison is done using MoMu reconstruction package with DC-
MathSegmentMaker and NTULegendreSegments. DCMathSegmentMaker provides
the best performance so the Legendre Algorithm will be compared only to it. Muon-
boy will not be tested segment by segment but some results while running it in stand-
alone mode will be presented at the end of the chapter. The Legendre algorithm will
be tested in two possible configurations, one with loose and one with tight cuts. The
samples are reconstructed with the above algorithms and the reconstructed segments
are matched with the simulated segments to evaluate the match. The segments that
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are matched with the truth info are called matched segments. The reconstructed
segments that are not matched to the truth information are characterized as fake
segments. The segments are extrapolated and the reconstructed vertex parameters
compared to the the simulated tracks. The values of these parameters tend to be
similar in high-pt muons that the full tracks tend to be straight lines but differ very
much in low-pt samples where the tracks are curved. For a quantitive description
of the performance, the reconstruction efficiency and the purity of the algorithms is
presented. The reconstruction efficiency is defined as:

Efficiency =
N̄match

N̄sim

,

where N̄match is the average number of segments that are matched per event and N̄sim

is the average number of simulated segments per event. On the same manner, the
purity is defined by:

Purity =
N̄match

N̄match + N̄fake

,

where N̄fake is the average number of fake segments per event. Finally, the Fake rate
is defined as:

Fake Rate =
N̄fake

N̄match

,

A first estimation of the performance is depicted in Fig. 5.1. Histogram (a) shows the
difference between the track R coordinate and the R coordinate derived by extrapo-
lating the segment. The peak is broad because the curvature of the muon. The Muon
spectrometer is a large system, something which results in a large error on the global
coordinate system even if the magnetic field pulls are very small. All the algorithms
have the same behavior because they use the same χ2 fitter for their segments. The
same results are valid for the other parameters as the z coordinate and the θ angle.
In the θ angle distribution (Histogram (c)) it is visible that the tight cut Legendre
algorithm has more of its reconstructed segments centered which results on a better
segment quality. In Histogram (d) the residuals (as defined in Section 4.4) are plot-
ted. All algorithms have the same distribution. The residual error is 86.1 ± 1.0 µm
which is equal to the precision of MDT chambers in position measurement.

The reconstruction efficiency of the algorithm is depicted in Fig. 5.2. Histogram
(a) shows the number of matched segments per event. MoMu and Legendre in the
loose-cut configuration have equal distributions. There is a small loss in the recon-
struction efficiency for the tight cut configuration. Histogram (b) shows the number of
fake segments per event. Legendre, in both configurations, shows a smaller fake rate
than MoMu. Histogram (c), shows the number of hits per segment for the matched
segment. This is an indicator of the segment quality. In all algorithms, there are two
peaks on size and eight hits. This is connected to how many layers of tubes exist
per chamber. In the inner layer, the chambers have eight layers and in the middle
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Figure 5.3: Cavern background studies (a) Number of fake segments per event (b)
Number of hits on segment for matched segments (e) number of hits on segment for
fake segments.

and outer layers there are six layers of tubes. All algorithms have similar perfor-
mance. It is noted that in the tight-cut case of the Legendre algorithm there are
more segments on the two peaks, something that indicates a better segment quality.
Finally histogram (d) shows the number of hits per segment for the fake segments.
This histogram is important because it provides information about what kind of fake
segments are detected for each case. In the Legendre algorithm in both configura-
tions there are significant peaks in 6 and 8 hits, something that indicates that the
algorithm is cheated only in the case that a secondary particle passes from the tubes
and not by randomly distributed noise hits. Moreover in the tight cut case the peaks
become higher, something that amplifies the previous argument. For a quantitive
desciption,the purity, efficiency and fake rate of the algorithm have been computed.
MoMu provides the higher reconstruction efficiency of 97% while the Legendre in the
loose and tight cut configuration provides 96% and 92% respectively. The respective
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fake rate is 15% for MoMu and 12% and 7% for Legendre in both configurations. The
purity, which is an overall indicator of the performance is 87% for MoMu, 89% for
the loose Legendre and 94% for the tight Legendre case.

The Legendre algorithm was proven to provide very nice performance on a clean
20 GeV sample. A tight-cut configuration provides even higher purity but there is
no special need to be used in this relative clean sample. The great need for a tight
cut configuration arises when cavern background samples need to be processed as
described in next section.

5.2.2 Eliminating cavern background

For studying cavern background , a sample of pt = 100 GeV, with cavern back-
ground was processed. The signal to background ratio was selected to be 0.2 so there
is 500% noise per event. Fig 5.3 describes the performance studies. Histogram (a)
depicts the number of fake segments per event. MoMu has the highest fake rate.
The average value of fake segments per event is 37. The Legendre algorithm on the
loose cut configuration reduces the fake rate by a factor of two but still a lot of fake
segments exist.There are 19 fakes per event. From Histogram (d), it is derived that
for both algorithms, most of the fake segments have three hits. This is expected
because in a high background sample of randomly distributed hits, the possibility of
finding a line with three hits becomes very high. So it is essential to apply the tight
configuration for the Legendre algorithm, with a threshold of four drift circles per
line. This procedure reduces the fake rate near the level of clean samples. The cavern
background is almost eliminated providing an average value of 1 segment per event.
Histogram (b) shows the distribution of hits on the matched segments. The expected
peaks at 6 and 8 are much sharper in the Legendre tight configuration. In Histogram
(c), one can observe that in the Legendre tight-cut configuration, the distribution
approaches the one of the clean samples except a noise peak at 4 hits(There are some
fake segments with four peaks).

5.2.3 Overall performance

The previous section presents a detailed comparison on the segment level between
the segment finder of the MoMu reconstruction program and the new Legendre algo-
rithm. These studies were done on a clean sample of pt = 20 GeV and in a cavern
background sample of pt = 100 GeV. The cavern background sample was selected to
be 100 GeV so that there are no curvatures in the tracks and any inefficiencies would
be due to cavern background. In this section, the studies were repeated for momenta
ranging between pt = 2 − 100 GeV. Data from Muonboy package are included but
it is reminded that the comparison with Muonboy is done on the package level and
segment data are extracted afterwards so the comparison could be biased. Table 5.2
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shows the segment reconsdtruction efficiency for the different algorithms. and Table
5.3 shows the segment purity.

Table 5.2: Segment reconstruction efficiency for all algorithms

Algorithm/pt 2 GeV 20 GeV 100 GeV
MoMu 77% 97% 97%

Muonboy 67% 92% 91%
Legendre(t = 3) 76% 96% 95%
Legendre(t = 4) 71% 92% 91%

Table 5.3: Segment reconstruction purity for all algorithms

Algorithm/pt 2 GeV 20 GeV 100 GeV
MoMu 78% 87% 73%

Muonboy 71% 88% 73%
Legendre(t = 3) 79% 89% 75%
Legendre(t = 4) 81% 94% 79%

It is observed that the Legendre algorithm provides the best segment purity in
both configurations. MoMu still provides the highest reconstruction performance.
Generally, for high values of the efficiency an incleased fake rate is expected. This is
also observable by the tunability of the Legendre algorithm. Making the cuts slightly
tighter, the purity increases but there is also a loss in the efficiency. However, it is
visible that the Legendre algorithm for the cavern background and in the loose cut
configuration can provide a reconstruction efficiency near MoMu but it reduces the
fake rate by a factor of two. A tighter cut by one more drift circle per line can further
reduce noise by a factor of 10 making the reconstruction problem much easier.

5.2.4 Computing performance

The Legendre algorithm was proved to be a very efficient tool in segment recon-
struction in the ATLAS Muon spectrometer. This section refers to the CPU perfor-
mance of the algorithm. As mentioned in the previous chapter, histogram algorithms
tend to consume large amounts of memory for hosting the transform space. However,
it was proven that the Legendre transform can be applicable because it holds the
minimum information. Fig. 5.4 shows the processing time and the histogram size in
memory for a cavern background sample. A fit with the Landau distribution in both
cases gives a mean (Mean peak value) processing time of 16ms and an average size
in memory of 100kB. It is denoted that the cavern background case is the most con-
suming in resources because a very large number of circles needs to be transformed.
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Figure 5.4: Computing performance studies (a) Algorithm processing time (b) His-
togram size in memory

The algorithms maintain low values in the CPU performance parameters, something
that makes it applicable in high production rates.

5.3 Summary

In this chapter the Legendre algorithm was developed and tested in the ATLAS
software. The algorithm shows the highest purity something that makes it a very
useful tool for cavern background reconstruction. Moreover the CPU performance is
nice and acceptable, something that makes the reconstruction algorithm applicable
for mass offline reconstruction. The algorithm can be integrated for segment recon-
struction in MoMu and Moore reconstruction packages via simple job option entries.



Appendix A

The Radon/Hough transform

Let a function f : R2 → R defined in a space D ⊆ R2 and L a random straight line of
R2 space. The linear Radon transform [1, 12] is defined by the projection of f(x, y)

on line L. Therefore, the Radon transform which is denoted by f(x, y)
R←−−→ f̌(r, θ)

and is expressed by the following integral:

f̌(r, θ) = R[f(x, y)] =

∫
L

f(x, y)ds, (A.1)

where ds is the fundamental line segment. Usually, the line L will be parameterized
using the canonical form equation:

r − x cos θ − y sin θ = 0, (A.2)

where r and θ are shown in Fig. 3.3b. Therefore, the integral of f(x, y) on line L
depends on the parameters r, θ, (Equation (A.2)).

The Radon transform can be defined on any curve (even in higher dimensions)
and a standard procedure is to define the transform on the curve that needs to be
recognized. Using the definition of delta function δ(r), and by combining equations
(A.1) and (A.2), the Radon transform of a function f(x, y) will be:

f̌(r, θ) =

∫ ∫
R2

f(x, y)δ(r − x cos θ − y sin θ) dxdy. (A.3)

It is known that on a plane, a single point (x0, y0) can be described by the function:

f(x, y) = δ(x− x0)δ(y − y0).

Therefore, the Radon transform of a single point (x0, y0) as implying from Equation
(A.3) will be:

f̌(r, θ) = δ(r − x0 cos θ − y0 sin θ). (A.4)

68
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Equation (A.4) has the form of (A.2) and represents a sinogram in Radon space (r, θ).
This formula can provide a discrete transformation method suitable for computer
algorithms known as the Hough transform. According to Hough transform, each
point (x0, y0) in image space is transformed to a sinogram r = x0 cos θ + y0 sin θ
that describes all possible lines that pass from the point (x0, y0). Therefore, for two
given points in image space, there are two sinograms in transform space and their
intersection point represents the parameters r and θ of the line that connects the two
points in image space.
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